



(日) (國) (필) (필) (필) 표

#### UNIVERSITY MUSTAPHA STAMBOULI OF MASCARA

### Faculty Of Sciences Exactes

# Top-k Formal Concepts for identifying Positively and Negatively Correlated Biclusters

Amina HOUARI and Sadok BEN YAHIA

E-mail: amina.houari@univ-mascara.dz

MEDI'2021, June 21, 2021

### Plan



- 2 Formal Concept Analysis
- 3 Top-BicMiner: The proposed Algorithm
- 4 Experimental Results
- 5 Conclusin & future work

э

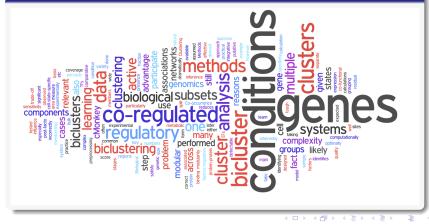
(B)

Formal Concept Analysis Top-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

## Outline



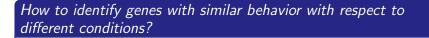
- 2 Formal Concept Analysis
- 3 Top-BicMiner: The proposed Algorithm
- 4 Experimental Results
- 5 Conclusin & future work


(日) (同) (日) (日) (日)

э

Formal Concept Analysis Top-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

### Introduction Context of the research


#### The Increasing Challenge of Microarray Data



Amina HOUARI and Sadok BEN YAHIA (lipa

Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

### What is Biclustering ?





Amina HOUARI and Sadok BEN YAHIA (lipa

(日) (同) (日) (日) (日)

э

Formal Concept Analysis Top-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work

Biclustering What is Biclustering? Why Biclustering ?

# Why Biclustering ?

- Key to determine function of genes.
- Key to determine classification of conditions.

### Biclustering

- Biclustering identifies subsets of genes and subsets of experimental conditions that share similar expression patterns.
- Similar concepts: subspace clustering, coclustering, bidimentional clustering, two-mode clustering.

(日) (同) (日) (日) (日)

Formal Concept Analysis op-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

### Problem formulation

# Let $m_{ij}$ be the expression level of the i - th gene in the j - th condition

AMINA HOUARI AND SADOK BEN YAHIA (LIPA FCA-Based Biclustering

э.

Formal Concept Analysis Top-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

# Problem formulation

Let  $m_{ij}$  be the expression level of the i - th gene in the j - th condition

#### Bicluster

A bicluster is a subset of a data matrix  $M(I,J),\ I=\!\{1,\ \ldots, n\}$  and  $J\!=\!\{1,\ \ldots, m\}$ 

(日) (同) (三) (三) (三)

Biclustering What is Biclustering? Why Biclustering ? Problem formulation

# Problem formulation

Let  $m_{ii}$  be the expression level of the i - th gene in the i - thcondition

#### Bicluster

A bicluster is a subset of a data matrix M(I, J),  $I = \{1, \ldots, n\}$ and  $J = \{1, ..., m\}$ 

#### Bicluster

A bicluster is a pair (A,B) where:

- A is a subset of genes,  $A \subset I$
- B is a subset of conditions,  $B \subset J$

イロト イポト イヨト イヨト

э.

Formal Concept Analysis Top-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

# Contribution

### (-)

A majority of existing biclustering algorithms for microarrays data focus only on extracting biclusters with positive correlations of genes.

#### Challenge

Recently, biological studies turned to a trend focusing on the notion of negative correlations [Zhao et al., 2008, Nepomuceno et al., 2015, Odibat and Reddy, 2014].

(日) (同) (三) (三)

Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

### Biclustering Gene Expression Data

### • Biclusters of positive correlations.

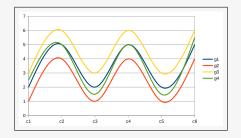



Figure : Examples of positive correlations.

( )

Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

### Biclustering Gene Expression Data

• Biclusters of negative correlations [Zhao et al., 2008, Nepomuceno et al., 2015].

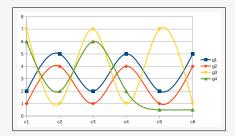



Figure : Examples of negative correlations.

Amina HOUARI and Sadok BEN YAHIA (Lipa fca-ba

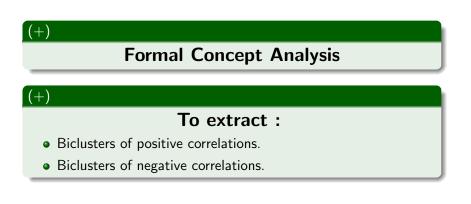
Formal Concept Analysis Top-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

# Contibution



### **Formal Concept Analysis**

Amina HOUARI and Sadok BEN YAHIA (lipa


FCA-Based Biclustering

イロン イヨン イヨン イヨン

э.

Formal Concept Analysis Top-BicMiner: The proposed Algorithm Experimental Results Conclusin & future work Biclustering What is Biclustering? Why Biclustering ? Problem formulation Contribution

# Contibution



Amina HOUARI and Sadok BEN YAHIA (lipa

FCA-Based Biclustering

3

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

### Outline



2 Formal Concept Analysis

3 Top-BicMiner: The proposed Algorithm

4 Experimental Results

5 Conclusin & future work

Amina HOUARI and Sadok BEN YAHIA (lipai

イロト イポト イヨト イヨト

3

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

# Formal Context

#### A binary table as a formal context

A triple  $\mathcal{K}=(\mathcal{O},\mathcal{I},\mathcal{R})$ , where:

- $\mathcal{O}$  : A set of objets : genes,
- $\mathcal{I}$  : A set of attributes : Conditions,
- *R* ⊆ *O* × *I* a binary relation (*o*, *i*) ∈ *R*, shows which objects have which attributes.

э.

イロト 不得 トイヨト イヨト

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

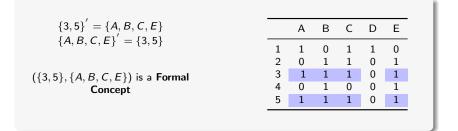
### Formal Context

#### Where:

- **1**  $\mathcal{O} = \{1, 2, 3, 4, 5\}$
- ${\color{black} 2} \hspace{0.1in} \mathcal{I} \hspace{-0.1in}= \{A,B,C,D,E\}$

● *r*1 : {(1),(A,C,D)}

|   | Α | В | С | D | Е |
|---|---|---|---|---|---|
| 1 | × |   | × | × |   |
| 2 |   | × | × |   | × |
| 3 | × | × | × |   | × |
| 4 |   | × |   |   | × |
| 5 | × | × | × |   | × |


Table : Example of a formal context

< ロ > < 同 > < 回 > < 回 > < 回 > <

AMINA HOUARI AND SADOK BEN YAHIA (LIPA) FCA-Based

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

### A maximal rectangle as a formal concept

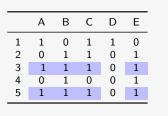


Amina HOUARI and Sadok BEN YAHIA (LIPA FCA

イロト イポト イヨト イヨト

э

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data


### A maximal rectangle as a formal concept

#### A Galois connection to characterize formal concept

 $A^{'} = \{ o \in O \mid \forall g \in \mathcal{A}, (g, o) \in \mathcal{R} \}$  $B' = \{ g \in G \mid \forall o \in \mathcal{B}, (g, o) \in \mathcal{R} \}$ 

$$\{3,5\}' = \{A, B, C, E\}$$
  
 $\{A, B, C, E\}' = \{3,5\}$ 

 $(\{3,5\}, \{A, B, C, E\})$  is a Formal Concept



イロト イポト イヨト イヨト

э

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

### A maximal rectangle as a formal concept

| A Galois connec | tion to charact | erize formal concept |
|-----------------|-----------------|----------------------|
|-----------------|-----------------|----------------------|

 $\begin{array}{l} \textbf{A}^{'} = \{ \textbf{o} \in O \mid \forall \ \textbf{g} \in \mathcal{A}, \ (\textbf{g}, \textbf{o}) \in \mathcal{R} \} \\ \textbf{B}^{'} = \{ \textbf{g} \in G \mid \forall \ \textbf{o} \in \mathcal{B}, \ (\textbf{g}, \textbf{o}) \in \mathcal{R} \} \end{array}$ 

HOUARI AND SADOK BEN YAHI

Amina

(A, B) is a formal concept with **extent** A' = B and **intent** A = B'

| $\{3,5\}' = \{A, B, C, E\}$         |   | А     | В     | С | D     | E           |     |
|-------------------------------------|---|-------|-------|---|-------|-------------|-----|
| $\{A, B, C, E\}' = \{3, 5\}$        | 1 | 1     | 0     | 1 | 1     | 0           |     |
|                                     | 2 | 0     | 1     | 1 | 0     | 1           | - 1 |
| $({3,5}, {A, B, C, E})$ is a Formal | 3 | 1     | 1     | 1 | 0     | 1           |     |
| Concept                             | 4 | 0     | 1     | 0 | 0     | 1           | - 1 |
| •                                   | 5 | 1     | 1     | 1 | 0     | 1           |     |
|                                     |   |       |       |   |       |             |     |
|                                     |   | < D ) | • • • | • | ≣ ► → | $\Xi \succ$ | - E |

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

# FCA-based Biclustering



FCA as a kind of biclustering for binary data. It provides pattern (bicluster) extraction from a binary relation, namely, a formal concept.

AMINA HOUARI AND SADOK BEN YAHIA (LIPA FCA-Based Biclustering

3

イロト イポト イヨト イヨト

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

# FCA-based Biclustering

### (+)

FCA as a kind of biclustering for binary data. It provides pattern (bicluster) extraction from a binary relation, namely, a formal concept.

FC = (A, B) is a concept if:

A : is an extent: objects share same attributes.

B: is an intent: attributes shared by the set of objects (extent).

(日) (周) (三) (三)

Formal Context Definition Formal Context Example Formal Concept FCA as a kind of biclustering for binary data

# FCA-based Biclustering



FCA as a kind of biclustering for binary data. It provides pattern (bicluster) extraction from a binary relation, namely, a formal concept.

FC = (A, B) is a concept if:

A : is an extent: objects share same attributes.

B: is an intent: attributes shared by the set of objects (extent).

### (+)

In its gene expression data applications:

The concept's **extent** represent maximal sets of **genes** related to a maximal set of **samples** (concept's **intent**).

Principal Illustrative example

### Outline



- 2 Formal Concept Analysis
- 3 Top-BicMiner: The proposed Algorithm
- 4 Experimental Results
- 5 Conclusin & future work

Amina HOUARI and Sadok BEN YAHIA (lipa

イロト イポト イヨト イヨト

э.

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

### Strong suits of Top-BicMiner

- A new discretization method for microarray data.
- Extraction of biclusters with positive and negative correlations using FCA.

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

#### **Top-BicMiner:** Principal

- Phase 1: "The discretization phase"
- **2** Phase 2: "The mining Phase"
- Phase 3: "The filtering Phase"
- Phase 4: "Extracting positively / negatively-correlated genes"

イロト 不得下 イヨト イヨト

Principal Illustrative example

### Extracting Biclusters of positive and negative correlation Top-BicMiner algorithm

#### Top-BicMiner: Principal

### Phase 1: "The discretization phase"

- Discretize the original microarray data into a behavior data matrix (behavior matrix).
- Discretize the behavior data matrix into two binary data matrices.
- Phase 2: "The mining Phase"
- Output: Phase 3: "The filtering Phase"
- Phase 4: "Extracting positively / negatively-correlated genes"

イロト イポト イヨト イヨト

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

#### Top-BicMiner: Principal

- Phase 1: "The discretization phase"
- Phase 2: "The mining Phase"
  - Extracting formal concepts from the two binary contexts.
- **③** Phase 3: "The filtering Phase"
- Phase 4: "Extracting positively / negatively-correlated genes"

イロト 不得 トイヨト イヨト

э.

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

### **Top-BicMiner:** Principal

- Phase 1: "The discretization phase"
- **2** Phase 2: "The mining Phase"
- Operation of the second sec
  - The resulting biclusters are filtered using the TOPSIS multi-criteria (coupling, cohesion, stability, separation and distance. We have to **maximize**: stability, cohesion and separation. And **minimize**: coupling and distance.)
- Phase 4: "Extracting positively / negatively-correlated genes"

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

### Example (Pre-processing)

|                       | <i>c</i> <sub>1</sub> | <i>c</i> <sub>2</sub> | <i>C</i> 3 | C4 | C5 |
|-----------------------|-----------------------|-----------------------|------------|----|----|
| <i>g</i> <sub>1</sub> | 4                     | 5                     | 3          | 6  | 1  |
| g2                    | 8                     | 10                    | 6          | 12 | 2  |
| g3                    | 3                     | 3                     | 3          | 3  | 3  |
| g4                    | 7                     | 1                     | 9          | 0  | 8  |
| <b>g</b> 5            | 14                    | 2                     | 18         | 0  | 16 |

Table : Example of gene expression matrix  $(M_1)$ .

|            | C1 | C <sub>2</sub> | C <sub>3</sub> | C4 | C <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> | C <sub>8</sub> | C <sub>9</sub> | C <sub>10</sub> |
|------------|----|----------------|----------------|----|----------------|----------------|----------------|----------------|----------------|-----------------|
| <b>g</b> 1 | 1  | -1             | 1              | -1 | -1             | 1              | -1             | 1              | -1             | -1              |
| g2         | 1  | -1             | 1              | -1 | -1             | 1              | -1             | 1              | -1             | -1              |
| g3         | 0  | 0              | 0              | 0  | 0              | 0              | 0              | 0              | 0              | 0               |
| g4         | -1 | 1              | -1             | 1  | 1              | -1             | 1              | -1             | -1             | 1               |
| g5         | -1 | 1              | -1             | 1  | 1              | -1             | 1              | -1             | -1             | 1               |

Table : 3-state data matrix  $(M_2)$ .

Amina HOUARI and Sadok BEN YAHIA (lipa) 🛛 🖡

FCA-Based Biclustering

19/

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

### Example (Pre-processing)

|          | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
|----------|----|----|----|----|----|----|----|----|----|-----|
| g1       | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0   |
| g2<br>g3 | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0   |
| g4       | Ó  | 1  | Ó  | 1  | 1  | Ó  | 1  | Ó  | Ó  | 1   |
| g5       | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 1   |

|                | C1 | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> | C <sub>8</sub> | C9 | C <sub>10</sub> |
|----------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|-----------------|
| <i>g</i> 1     | 1  | -1             | 1              | -1             | -1             | 1              | -1             | 1              | -1 | -1              |
| g2             | 1  | -1             | 1              | -1             | -1             | 1              | -1             | 1              | -1 | -1              |
| g3             | 0  | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | 0               |
| <b>g</b> 4     | -1 | 1              | -1             | 1              | 1              | -1             | 1              | -1             | -1 | 1               |
| g <sub>5</sub> | -1 | 1              | -1             | 1              | 1              | -1             | 1              | -1             | -1 | 1               |

#### Table : $\mathcal{M}3^+$ .

| Table : | 3-state  | data |
|---------|----------|------|
| matrix  | $(M_2).$ |      |

|                            | C1               | C2                    | C3               | C4                    | C5                    | C6               | C7                    | C8               | C9                    | C10                   |
|----------------------------|------------------|-----------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|-----------------------|
| g1<br>g2<br>g3<br>g4<br>g5 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 |
|                            |                  |                       |                  |                       |                       |                  |                       |                  |                       |                       |

Table : 
$$\mathcal{M}3^{-}$$

Amina HOUARI and Sadok BEN YAHIA (lipa

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

### Example (Pre-processing)

|    | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
|----|----|----|----|----|----|----|----|----|----|-----|
| g1 | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0   |
| g2 | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0   |
| g3 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| g4 | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 1   |
| g5 | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 1   |

|            | C1 | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> | C <sub>8</sub> | C9 | C <sub>10</sub> |
|------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|-----------------|
| <i>g</i> 1 | 1  | -1             | 1              | -1             | -1             | 1              | -1             | 1              | -1 | -1              |
| g2         | 1  | -1             | 1              | -1             | -1             | 1              | -1             | 1              | -1 | -1              |
| g3         | 0  | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | 0               |
| <b>g</b> 4 | -1 | 1              | -1             | 1              | 1              | -1             | 1              | -1             | -1 | 1               |
| <i>g</i> 5 | -1 | 1              | -1             | 1              | 1              | -1             | 1              | -1             | -1 | 1               |

#### Table : $\mathcal{M}3^+$ .

Table : 3-state data matrix  $(M_2)$ .

|                            | C1               | C2                    | C3               | C4                    | C5                    | C6               | C7                    | C8               | C9                    | C10                   |
|----------------------------|------------------|-----------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|-----------------------|
| g1<br>g2<br>g3<br>g4<br>g5 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>1<br>1 | 1<br>1<br>0<br>0<br>0 |
|                            |                  |                       |                  |                       |                       |                  |                       |                  |                       |                       |

Table : 
$$\mathcal{M}3^{-}$$

Amina HOUARI and Sadok BEN YAHIA (lipa

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

### Example (Pre-processing)

|    | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
|----|----|----|----|----|----|----|----|----|----|-----|
| g1 | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0   |
| g2 | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0   |
| g3 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| g4 | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 1   |
| g5 | 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 1   |

|            | C1 | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> | C <sub>8</sub> | C9 | C <sub>10</sub> |
|------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|-----------------|
| <i>g</i> 1 | 1  | -1             | 1              | -1             | -1             | 1              | -1             | 1              | -1 | -1              |
| g2         | 1  | -1             | 1              | -1             | -1             | 1              | -1             | 1              | -1 | -1              |
| g3         | 0  | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | 0               |
| <b>g</b> 4 | -1 | 1              | -1             | 1              | 1              | -1             | 1              | -1             | -1 | 1               |
| g5         | -1 | 1              | -1             | 1              | 1              | -1             | 1              | -1             | -1 | 1               |

#### Table : $\mathcal{M}3^+$ .

| Table : | 3-state  | data |
|---------|----------|------|
| matrix  | $(M_2).$ |      |

|    | C1 | C2                    | C3               | C4                    | C5                    | C6               | C7                    | C8               | C9               | C10                   | Ī |
|----|----|-----------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|------------------|------------------|-----------------------|---|
| g2 |    | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>0<br>1 | 1<br>1<br>0<br>0<br>0 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>0<br>1 | 1<br>1<br>0<br>0<br>0 | 0<br>0<br>1<br>1 | 1<br>1<br>0<br>1 | 1<br>1<br>0<br>0<br>0 |   |
|    |    |                       |                  |                       |                       |                  |                       |                  |                  |                       | • |

Table : 
$$\mathcal{M}3^{-}$$

Amina HOUARI and Sadok BEN YAHIA (lipa

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

#### Example (The Mining phase)

Extracting formal concepts from the two binary contexts obtained from the previous step.

| Formal Concepts (FCs)                  |                  |                                       |                    |                                                          |                   |        |   |                                                     |  |
|----------------------------------------|------------------|---------------------------------------|--------------------|----------------------------------------------------------|-------------------|--------|---|-----------------------------------------------------|--|
|                                        | 3+               |                                       | $\mathcal{M}3^{-}$ |                                                          |                   |        |   |                                                     |  |
| ID concept                             | extent           | intent                                |                    | ID concept                                               | I                 | extent | I | intent                                              |  |
| FC 1 <sup>+</sup><br>FC 2 <sup>+</sup> | g1, g2<br>g4, g5 | C1, C3, C6, C8<br>C2, C4, C5, C7, C10 |                    | FC 1 <sup></sup><br>FC 2 <sup></sup><br>FC 3 <sup></sup> | g4,<br>g1,<br>g1, |        |   | C1, C3, C6, C8, C9<br>C2, C4, C5, C7, C9, C10<br>C9 |  |

Table : Extracted Formal concepts from the formal contexts.

A B F A B F

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

#### Example (The filtering phase)

A multi-criteria to be aggregated, namely, coupling, cohesion, stability, separation and distance. We have **to maximize** the following criteria: stability, cohesion and separation. In addition, the criteria **to minimize** are coupling and distance.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Principal Illustrative example

### Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

#### Example (Negatively-correlated genes extraction phase)

Consider coherent formal concepts having an intersection size greater or equal to a given intersection threshold  $\alpha 1$ .

AMINA HOUARI AND SADOK BEN YAHIA (LIPA) FCA-Based

< ロ > < 同 > < 回 > < 回 > < 回 > <

Principal Illustrative example

## Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

Example (Negatively-correlated genes extraction phase)

Consider coherent formal concepts having an intersection size greater or equal to a given intersection threshold  $\alpha 1$ .

Suppose that  $\alpha 1 = 70\%$  and using our example we have:

Principal Illustrative example

Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

## Example (Negatively-correlated genes extraction phase)

Consider coherent formal concepts having an intersection size greater or equal to a given intersection threshold  $\alpha 1$ .

```
Suppose that \alpha 1 = 70\% and using our example we have:

FC1^+ \cap FC1^- = C1, C3, C6, C8;

FC1^+ \cap FC2^- = \emptyset;

FC1^+ \cap FC3^- = \emptyset;

and

FC2^+ \cap FC1^- = \emptyset;

FC2^+ \cap FC2^- = C2, C4, C5, C7, C10;

FC2^+ \cap FC3^- = \emptyset.
```

イロト 不得 トイヨト イヨト

э.

Principal Illustrative example

## Extracting Biclusters of positive and negative correlations Top-BicMiner algorithm

#### Example (Negatively-correlated genes extraction phase)

The biclusters become:

Bic1 = ((g1, g2, g4, g5), (C1, C3, C6, C8)) and Bic2 = ((g1, g2, g4, g5), (C2, C4, C5, C7, C10)).

maxbic(Bic1, Bic2) = ((g1, g2, g4, g5), (C1, C2, C3, C4, C5, C6, C7, C8, C10)).





- 2 Formal Concept Analysis
- 3 Top-BicMiner: The proposed Algorithm
- 4 Experimental Results
- 5 Conclusin & future work

Amina HOUARI and Sadok BEN YAHIA (lipai

э.

(人間) システン イラン

# **Experimenal Evaluation**

#### **Biclusters validation**

#### The used datasets

- Yeast Cell-Cycle dataset [Tavazoie et al., 1999] (Nature Genetics).
- Human B-Cell Lymphoma dataset [Alizadeh et al.,2000]

イロト 不得 トイヨト イヨト

# **Experimenal Evaluation**

#### **Biclusters** validation

#### The used datasets

- Yeast Cell-Cycle dataset [Tavazoie et al., 1999] (Nature Genetics).
- Human B-Cell Lymphoma dataset [Alizadeh et al.,2000]

#### Statistical significance

- **Coverage:**Total number of cells in a microarray data matrix covered by the obtained biclusters
- P-value: Probability that genes of a bicluster have common biological characteristics.

# Experimenal Evaluation

#### Biclusters validation

#### The used datasets

- Yeast Cell-Cycle dataset [Tavazoie et al., 1999] (Nature Genetics).
- Human B-Cell Lymphoma dataset [Alizadeh et al.,2000]

#### Statistical significance

- Coverage: Total number of cells in a microarray data matrix covered by the obtained biclusters
- P-value: Probability that genes of a bicluster have common biological characteristics.

#### **Biological significance**

Measuring the quality of biclusters, by checking whether the genes of a bicluster have common biological characteristics.

## Experimenal Evaluation Statistical significance

#### Coverage

| Human B-cell Lymphoma |                |               |                    |  |  |
|-----------------------|----------------|---------------|--------------------|--|--|
| Algorithms            | Total Coverage | Gene Coverage | Condition Coverage |  |  |
| BiMine                | 8.93%          | 26.15%        | 100%               |  |  |
| BicFinder             | 44.24%         | 55.89%        | 100%               |  |  |
| CC                    | 36.81%         | 91.58%        | 100%               |  |  |
| Trimax                | 8.50%          | 46.32%        | 11.46%             |  |  |
| NBF                   | 73.75 %        | 100%          | 100%               |  |  |
| TOP-BICMINER          | 75.02 %        | 100%          | 100%               |  |  |

Amina HOUARI and Sadok BEN YAHIA (lipa

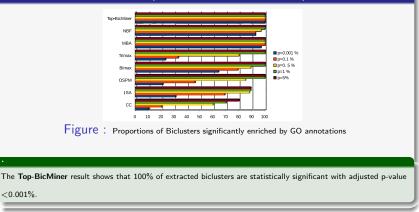
・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

э.

### Experimenal Evaluation Statistical significance

#### Coverage

| Yeast Cell-Cycle |                |               |                    |  |  |
|------------------|----------------|---------------|--------------------|--|--|
| Algorithms       | Total Coverage | Gene Coverage | Condition Coverage |  |  |
| BiMine           | 13.36%         | 32.84%        | 100%               |  |  |
| BicFinder        | 55.43%         | 76.93%        | 100%               |  |  |
| CC               | 81.47%         | 97.12%        | 100%               |  |  |
| Trimax           | 15.32%         | 22.09%        | 70.59%             |  |  |
| NBF              | 77.17 %        | 97.08%        | 100%               |  |  |
| Top-BicMiner     | 79.08 %        | 96.22%        | 100%               |  |  |


Our algorithm is competitive with surveyed algorithms.

Amina HOUARI and Sadok BEN YAHIA (lipa) F

(日) (同) (日) (日) (日)

#### Experimenal Evaluation Statistical significance

#### FuncAssociate: P-Value (Yeast Cell-Cycle dataset)



Amina HOUARI and Sadok BEN YAHIA (lipa

< □ > < <sup>[]</sup> >

#### Experimenal Evaluation Biological significance

#### . .

## GoTermFinder: Biological significance

## Yeast Cell-Cycle

|                    | Bicluster 1                                                                                                                       | Bicluster 2                                                                                                                                       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Biological process | cytoplasmic translation (53.1%, 7.80e-44)<br>maturation of SSU-rRNA (32.1%, 6.30e-25)<br>gene expression (96.3%, 5.20e-35)        | amide biosynthetic process (59.7%, 5.03e-19)<br>cleavage involved in rRNA processing (19.4%,1.14e-10)<br>rRNA 5'-end processing (13.4%, 1.12e-08) |
| Molecular function | RNA binding (72.8%, 7.61e-30)<br>heterocyclic compound binding (74.1%, 1.16e-12)<br>RNA-dependent ATPase activity(6.2%, 7.39e-06) | structural constituent of ribosome (53.7%, 7.84e-35)<br>binding (77.6%, 5.81e-05)<br>organic cyclic compound binding (73.1%, 7.66e-10)            |
| Cellular component | intracellular ribonucleoprotein complex (97.5%, 3.11e-74)<br>90S preribosome (29.6%, 7.94e-26)<br>nucleolus (37.0%, 6.15e-17)     | preribosome (47.8%, 2.22e-33)<br>large ribosomal subunit (38.8%, 7.66e-20)<br>cytosol (58.2%, 7.37e-12)                                           |

#### •

The results on this real-life data set show that our proposed algorithm can identify biclusters with a high biological

relevance.

Amina HOUARI and Sadok BEN YAHIA (lipa

Conclusion Future work

# Outline



- 2 Formal Concept Analysis
- 3 Top-BicMiner: The proposed Algorithm
- 4 Experimental Results
- 5 Conclusin & future work

э.

Conclusion Future work

# Conclusion

## A summary of the contribution

- Biclustering is useful for bioinformatics.
- NP-Hard.
- New FCA-based biclustering algorithm for both: positive and negative correlations.
- A new discretization methods for microarray data.
- Experimental study shows that the proposed algorithms can identify biclusters with a high quality (statistical and biological criteria).

Conclusion Future work

# Future work

#### Perspectives...

• Apply our algorithms on other domains of application.

• Another possible experimentation to assess the performance of our algorithm on big data.

Amina HOUARI and Sadok BEN YAHIA (lipa

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Conclusion Future work

# Future work

#### Perspectives...

- Apply our algorithms on other domains of application.
- Another possible experimentation to assess the performance of our algorithm on big data.

AMINA HOUARI AND SADOK BEN YAHIA (LIPA FCA-Based Biclustering

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

# Thank You For Your Attention

AMINA HOUARI AND SADOK BEN YAHIA (LIPA FC)

FCA-Based Biclustering

(日) (同) (日) (日) (日)

33/33

э

# Experimenal Evaluation : The used datasets

- Yeast Cell-Cycle dataset: a very popular dataset in the gene expression analysis community. It contains 2884 genes and 17 conditions.
- Human B-cell lymphoma dataset: contains 4026 genes and 96 conditions.

イロト 不得 トイヨト イヨト



Scatter search-based identification of local patterns with positive and negative correlations in gene expression data. *Appl. Soft Comput.*, 35:637–651.

Odibat, O. and Reddy, C. K. (2014). Efficient mining of discriminative co-clusters from gene expression data. *Knowl. Inf. Syst.*, 41(3):667–696.



Zhao, Y., Yu, J., Wang, G., Chen, L., Wang, B., and Yu, G. (2008).
Maximal subspace coregulated gene clustering. *Knowledge and Data Engineering, IEEE Transactions on*, 20(1):83–98.

イロト イポト イヨト イヨト